

Michigan Technological University

Bishop Design Report

Ryan Bakker

Marcus Beltman

Jacob Henke

Mitchell Johnson

Tyler Novak

Joe Venier

Michael Wilson

Zach Wolbers

Contents

Introduction .. 3

Team Organization .. 3

Estimated Cost .. 4

Hardware Overview .. 5

Camber .. 6

Active Balancing .. 7

Custom Mounts... 7

Software Overview .. 8

Hardware .. 9

Simulation ... 9

Line Detection ... 9

Mapping .. 10

Navigation ... 11

Performance ... 12

Speed .. 12

Reaction Times .. 12

Battery Life .. 13

Obstacle Detection.. 13

Navigation Techniques .. 13

Waypoint Arrival Accuracy .. 13

Simulation vs. Experimentation .. 14

Introduction

The Blue Marble Security Enterprise (BMSE) project Autobot is sponsored by Oshkosh Truck

Company for the Fall 2011 - Spring 2012 year. The purpose of this project is to improve upon a

previously designed robot, “Ash”, to compete in the Intelligent Ground Vehicle Competition (IGVC) in

the summer of 2012. In addition to this, a second design “Bishop,” is planned to develop throughout the

semester. The competition has several different challenges. The team plans to participate in the Auto-

Nav and JAUS challenges. These challenges require the robots to traverse an obstacle course involving

obstacle avoidance, staying inside of lanes, and navigating to certain GPS waypoints. They also require

implementation of the SAE JAUS standard for robot control and status reporting.

Team Organization

Over the past two semesters, eight people total have put an estimated 1500 hours into the project. Dr.

Jeffrey Burl has served as the faculty advisor for both semesters.

Fall Semester:

Name Role Major Year

Zach Wolbers Project Manager Software Eng. Junior

Joe Venier Documentation Chief Mechanical Eng. Junior

Marcus Beltman Financial Manager Electrical & Computer Eng. Junior

Jacob Henke Project Engineer Mechanical Eng. Junior

Mitchell Johnson Project Engineer Computer Eng. & Computer Science Senior

Michael Wilson Project Engineer Electrical Eng. Senior

Spring Semester:

Name Role Major Year

Zach Wolbers Project Manager Software Eng. Senior

Joe Venier Documentation Chief Mechanical Eng. Junior

Ryan Bakker Financial Manager Computer Eng. Sophomore

Marcus Beltman Project Engineer Electrical & Computer Eng. Senior

Jacob Henke Project Engineer Mechanical Eng. Senior

Mitchell Johnson Project Engineer Computer Eng. & Computer Science Senior

Tyler Novak Project Engineer Computer Science Sophomore

Estimated Cost

This year Autobot received a budget of $15,000 from Oshkosh Corporation. During this academic year,

an entirely new robot was created. While the budget for both Fall and Spring semesters is considerable,

the team stayed well within budget limits. The table below displays an overview of the budget.

Item Estimated Cost

Batteries $200

Cameras $210

GPS $30

IMU $130

Laptop/Dock $1,600

Laser Range Finder $6,000 (Donated)

Linear Actuator $130

Misc. Electrical $150

Motor Controllers $340

Motors $700

Sheet Metal/Structural $200

Wheels $250

Total $9,940

Hardware Overview

In the fall of 2011 we were asked by our sponsor, Oshkosh Trucking, to begin work on a new design to

assure adequate engineering and design work was available for the project. While a software re-write

was already planned, the idea of a fresh design was embraced by the team. The previous entry was

showing its age, and nobody on the team had anything to do with the previous design.

The following goals were set for the new design:

• Serviceable design, easy to replace components

• Center of rotation aligned with the center of the robot

• Light weight

• Creative and different

A unique two wheeled balancing setup was settled on after several design ideas were scrapped for

being too similar to our previous entry or other robots. All design goals were met in some capacity with

this decision; however there were a few drawbacks to the design. It was not as strong as a the tested

four wheel tub, and the addition of a third wheel would be a contingency if self leveling proved to be

beyond our resources or abilities.

The two-wheeled design necessitated the use of an active balancing mechanism to keep the robot

upright and stable. To this end, the design incorporated a linear actuator to swing the mass of the

batteries and payload relative to the robot’s axis of rotation on a tray hanging from the wheel hubs. In

this way, the robot’s center of gravity could be shifted to keep the robot upright at all times.

In practice, the actuator did not move fast enough to keep the robot balanced, so another solution

was sought. Instead of moving the weight of the robot to compensate for changes in acceleration, the

robot could be accelerated to compensate for a shift in its mass. The control theory was then similar to

a Segway, with the added control variable of where the robot’s mass should be placed.

To keep the robot upright, a simple PID filter was written. No special adaptations were used, as the

system responded fairly well to a textbook PID implementation. The angular displacement of the robot

was measured by an inertial measurement unit mounted on the robot’s mast.

When the robot was taken outside, the small humps presented by the grassy surfaces presented an

issue. The robot did not have enough rotated mass to account for the step in energy needed to roll over

grass mounds. As such, when encountering a lump of grass, the robot would sit and oscillate,

occasionally destructively. As a result, the team resorted to their backup plan and mounted a

pneumatic caster on the robot. The caster provided ample stability without severely compromising

maneuverability or maintainability.

Camber

One proposed design feature for the Bishop robot is mounting the wheels with a camber to further

reduce rolling. The camber will make the profile of the wheels have an oval profile (see below), which

will increase the robot’s self-righting properties as increasing the amount rolling will move the center of

gravity. The momentum of the robot will be counteracted by the height change by rotation, additional

height from cambered rotation, and moment caused by the linear distance from the contact to the

center of gravity. This extra force from camber will decrease the amount the robot will roll and shorten

the time the robot will take to right itself.

The amount of energy necessary to roll the robot to a given angle is equal to the distance the center of

gravity will be raised (which can easily be found through trigonometry) multiplied by the weight of the

robot (also true without camber). See below for how rolling on cambered wheels moves the robot.

It is important to mention that in reality, the robot’s center of gravity will not be at the center of the

wheel as it is in the picture, since most of the robot’s mass is in the components and tray. This means

that the distance the center of gravity is raised by rolling, and the distance from the point the wheel

contacts the ground to the center of gravity will be greater than shown in the figure.

Active Balancing

In order to adjust balance with this design the payload and batteries would be assembled on a

secondary tray that would slide fore and aft with a linear actuator. This design was discarded in favor of

a design that mounted the laser range finder to the main robot chassis. The tray mount design was also

modified and instead of being fully affixed to the motor assembly the system was hung from the main

wheel drive axles. In this way the batteries and payload could be fully fixed to the tray and the tray could

be tilted from the motor assembly and act as ballast. By creating a longer pivot arm for the ballast, the

linear forward and reverse distance was maximized which allowed for greater acceleration.

Custom Mounts

Much of the small mounting hardware for the robot was created from fully custom designs and printed

in PLA plastic material with a small extrusion printer. The camera mounts are good examples of this. For

the visual image processing 2 cameras were mounted at the top of a mast. The cameras were delicate

and not designed to be mounted except on top of a laptop screen. Plastic snap-together mounts were

designed and printed that fit over the edges of the cameras to securely hold them in place. This is an

innovation believed to be unique to this competition to date. Along with the camera mounts, a variety

of T-slot mounting hardware, enclosures, and brackets were designed and created on the rapid

prototyping device.

Software Overview

In the past, the team’s software followed a rather simple algorithm. Sensor data was analyzed to

determine which direction the robot could drive in the furthest; the robot would then point in that

direction, drive forward, and reanalyze its environment. While this algorithm has done well in the past,

it did have some major shortcomings:

• It disregarded some sensor data

• It did not perform complex path planning (for maneuvering around dead ends)

• Difficult to test; especially during the winter.

• Inherently sequential algorithm

In response to this, the team has worked to develop a new system to

address these deficiencies. The software is broken into three main

sections; the Hardware Abstraction Layer provides simple, low level

access to the robot’s equipment, the Mapping Layer processes current

sensor data to generate maps in real time, and the Control Layer sends movement commands.

Hardware

Simulation

When working with the team’s past entry, one of the more surprising difficulties arose from testing.

Effective outdoor testing requires favorable weather conditions (daytime lighting, no snow or hard rain,

ect.), constructing an obstacle course, bringing the robot outside to the course, and finally testing.

While none of these tasks are too complicated, they do introduce quite a bit of overhead for testing

small, simple, 5 minute changes to the software. To help alleviate this, the team decided to include built

in simulation capabilities in the software. Not only has this aided the team during normal development,

but it has also allowed the team to perform comprehensive testing on the software while the robot itself

was still being built.

In order for simulated testing to be effective, a few requirements must be met. Firstly, the simulated

data must exercise as much of the software as possible. For example, the team can’t simply plug in fake

maps into the navigation software; this would leave all of the mapping software untested

(approximately 40% of the software). On the other extreme, though, the team cannot practically

simulate interactions with hardware (such as initializing the Laser Range Finder, or configuring the GPS).

In order to achieve a balance between the two, the Hardware Abstraction Layer can be run in two

different modes. When hardware is present, different components of the HAL will attempt to open,

initialize, and maintain a device (such as the Cameras, or the Laser Range Finder). But when it’s in

simulation mode, these components will instead generate fake sensor data on the fly based of off a

simulated environment. The same interfaces are provided to the rest of the software regardless of

which mode the software is run in, allowing most of the same code to be executed regardless of

whether or not a robot is attached to the computer.

Finally, in order to ensure the simulator thoroughly tests the rest of the software, random error is

added to any generated data.

Line Detection

When pulling images from the cameras, the software needs to perform two main tasks:

• White lines must be detected

• Account for the camera’s perspective (square objects on the ground appear slanted in the

camera’s images)

To do this, images are processed and manipulated using the library OpenCV.

using a simple color filter, and images are warped to give the appearance of a bird’s eye view (described

below). Once these transformations have been applied, we’re left with filtered, sq

is placed within the field of view of the camera

aligned to be square with the robot. Finally, the user

simply needs to enter in the distance from the

square to the robot, and click on the four corners of the sq

determine the appropriate transformation, and output it’s configuration into a file for use later.

Mapping

To generate maps of the robot’s environment, the team is using an

algorithm known as Iterative Closes

Mobile Robot Programming Toolkit (MRPT).

internally as 2D point clouds, where each point r

detected obstacle, and sensor data is also processed as 2D

clouds (such as those from the Laser Range Finder)

software runs, it tries to iteratively guess how new sensor data

Account for the camera’s perspective (square objects on the ground appear slanted in the

ssed and manipulated using the library OpenCV. Lines are detected

using a simple color filter, and images are warped to give the appearance of a bird’s eye view (described

below). Once these transformations have been applied, we’re left with filtered, square images that

indicate where lines are in relation to the robot’s

currently location, allowing the data to be easily

processed by the mapping software.

In order to acquire data necessary for a

perspective transformation, the team has created

a simple calibration program. A 1x1 meter square

is placed within the field of view of the camera and

aligned to be square with the robot. Finally, the user

simply needs to enter in the distance from the

square to the robot, and click on the four corners of the square. The software will automatically

determine the appropriate transformation, and output it’s configuration into a file for use later.

of the robot’s environment, the team is using an

algorithm known as Iterative Closest Point (ICP) provided by the

Mobile Robot Programming Toolkit (MRPT). Maps are stored

internally as 2D point clouds, where each point represents a

detected obstacle, and sensor data is also processed as 2D point

clouds (such as those from the Laser Range Finder). As the

to iteratively guess how new sensor data

Account for the camera’s perspective (square objects on the ground appear slanted in the

Lines are detected

using a simple color filter, and images are warped to give the appearance of a bird’s eye view (described

uare images that

indicate where lines are in relation to the robot’s

currently location, allowing the data to be easily

processed by the mapping software.

In order to acquire data necessary for a

perspective transformation, the team has created

alibration program. A 1x1 meter square

uare. The software will automatically

determine the appropriate transformation, and output it’s configuration into a file for use later.

would best fit into the map. The hope is that while the majority of the sensor data would align properly,

some of the data would not, adding new portions to the map.

In addition to the point cloud map, a second map, an occupancy grid map, is also generated for

convenience. This map is simply a grayscale image, where each pixel represents the probability that an

obstacle is present at that location (white = clear, black = occupied, grey = unknown). While this map

isn’t needed for the ICP algorithm to work, it does simplify the path planning process (see below), and

provides visual aid for debugging purposes.

While maps can obviously have obstacles added to them, they can also have them removed. This can be

useful as it helps filter out some sensor noise, but it does pose a problem with sensor fusion. Originally,

the team was planning to combine both camera and Laser Range Finder Data together before it is sent

off to the map building software. This would work great for adding items to the map, but since the

camera’s field of view is significantly smaller than the laser range finder’s, camera data could potentially

be removed from the map if it was out of view of the cameras, but not that laser range finder. To avoid

this problem, the team decided to build two maps simultaneously, and merge them later.

While the ICP algorithm works well with the laser range finder data, the team quickly realized that it

would not work for mapping the lines. Compared to the laser range finder, the cameras have a rather

small field of view; it’s entirely possible that while navigating the course, the robot will be unable to see

any lines. Since ICP relies on aligning obstacle data, this would cause the map building software to fail,

ruining the map. In response, the team developed its own, custom mapping software. Using the

estimated pose of the robot in the obstacle map, camera data is scaled and placed on the appropriate

position of a separate map. This should work well unless the obstacle map loses sight of obstacles for a

stretch of time and the estimated pose is derived from odometry alone, but due to the laser range

finder’s large field of view, it’s very unlikely that this will happen.

Navigation

Once maps have been built of the robot’s environment, selecting a path is rather simple. First, the

maps are merged by comparing the two maps (two grayscale images), and storing the darkest color in a

third, merged map (transferring obstacles from each). Finally, the merged map is treated as a graph,

allowing it to be processed using a well established path finding algorithm. While the team originally

used Dijkstra’s Algorithm for the task, the team eventually switched to A* for the increased

performance.

Performance

Speed

Bishop’s 29” bicycle wheels are powered by two 24V NPC-T64 motors with a 20:1 gear

reduction. These motors were selected based upon durability and a mounting configuration which was

suited to our design. Assuming a rolling resistance requiring 10 ft/lbs of torque to maintain maximum

speed, the robot would be capable of traveling at 18.8 mph. This potential for high velocity is

undesirable should something go wrong. Few devices on the robot required a 24v source, so the motors

were run on 12v. We estimated this would cut the maximum speed, optimistically, in half. Considering a

grassy field provides more rolling resistance than our ideal case, we could safely assume the robot

would be hardware-limited to 10 mph. Encoders attached to the motors allow precise, configurable

speed limits to be applied in software.

Ramp Climbing Ability

Travelling in reverse, the outboard caster keeps the robot from rearing up on high torque

application. Under these circumstances, the robot is theoretically capable of climbing a 142% grade (55

degree slope), at 8 mph. This is assuming the tires have adequate traction on the incline surface. In

practice, adequate friction could not be achieved to test this limit, however it seemed feasible. The

position of the payload and battery can be adjusted on the fly to change the weight distribution of the

robot such that an acceleration of 1.5 m/s^2 does not cause the front caster to lift off the ground.

Reaction Times

Bishop’s software has profiling services built into it which prints off the times the software took to

complete various activities. Based off these results, the team has realized that the overhead of mapping

sensor data is insignificant compared to that of acquiring data. As such, obstacle detection is largely

limited by our sensors, the cameras and the laser range finder, both of which operate concurrently at

approximately 30hz. Unfortunately, though, path planning/navigation is more computationally

complex. On average, paths can be computed in approximately .2 to .5 seconds, but we have observed

worse case scenarios of about 1.5 seconds. In other words, while the software will detect obstacles

quickly, it could take up to 1.5 seconds for the software to make an intelligent decision regarding this

new data.

Battery Life

Component Voltage Current (to device) Efficiency (est.) Power

LIDAR 24V 1.7A 80% 43 W

Laptop +

Peripherals

120VAC .63A 65% 53W

Motors 12V 20A 95% 252W

Router 12V 1A 95% 13W

Misc. 12V 1A 95% 13W

 Total 374W

Efficiencies take into account losses in switching power supplies, and heating of wires and junctions,

they are rough estimations. Using two 30 amp hour batteries, battery life is calculated to be in the

neighborhood of two hours per charge. In practice, battery life lasts anywhere from 1.5 to 2 hours

under operating conditions.

Obstacle Detection

For physical obstacles, the practical range of our laser rangefinder in typical conditions is 30 meters,

accuracy is 1 cm, and the field of view is 180° at a .5° resolution. The cameras used to detect painted

boundaries, have a combined field of view of approximately 135°, and a range of roughly 3 meters.

White stripes on construction barrels show up on the map of painted boundaries, but these errors do

not accumulate, they are removed from the map as soon as a new sensor acquisition causes conflicting

observations, due to the barrels white lines existing in a plane which is not parallel to the ground.

Navigation Techniques

One of the benefits of using mapping/path planning is that “complex” obstacles (such as dead ends,

switch backs, ect.) are treated identically to “simple” obstacles (such as straight corridors). Bishop

performs with similar results in either situation.

Waypoint Arrival Accuracy

Bishop uses a single uBlox-5 GPS receiver, which can achieve a 2D accuracy of 2-3 meters. The

projection of our GPS data onto our local map is run through a moving average filter to keep

atmospheric noise and jitter from causing undesirable perceived waypoint movement. In this

configuration, observed drift is minimized, and destination arrival is based off of local map coordinates.

In this configuration, the filter does not cause any major localization delays. In practice, destination

arrival error has been observed at up to 2 meters from the desired destination. This needs

improvement before the competition.

Simulation vs. Experimentation

Significant effort was put into developing simulation capabilities for Bishop’s hardware. Major

sources of noise and non-idealities are accounted for in simulation, including:

• LIDAR distance and angular error

• Wheel position error

• Camera position error

• GPS drift and noise

• IMU measurement offset and noise

• Sensor delay

Mapping algorithms were tested using different hardware simulation profiles, ranging from

optimistic to worst case expectations for real world hardware performance, and desirable results were

achieved. During physical testing, map building performed similarly to simulation with a couple of

exceptions which are still unexplored.

